Scientific Inquiry: How Did The Building Blocks Of Life Arrive On Earth?

Eddie Gonzales Jr. – MessageToEagle.com – The question of how the fundamental components of life arrived on Earth remains a subject of significant scientific inquiry. Recent studies have revealed that zinc isotopic signatures found in meteorites may offer valuable insights into this profound mystery.

Researchers used zinc in meteorites to trace the origin of Earth’s volatile elements.

 Scientific Inquiry: How Did The Building Blocks Of Life Arrive On Earth?

An iron meteorite from the core of a melted planetesimal (left) and a chondrite meteorite, derived from a ‘primitive’, unmelted planetesimal (right). Credit: Rayssa Martins/Ross Findlay

The findings suggest that without ‘unmelted’ asteroids, Earth might have lacked enough compounds for life to emerge.

Volatiles are elements or compounds that change into vapor at relatively low temperatures. They include the six most common elements found in living organisms, as well as water. The zinc found in meteorites has a unique composition, which can be used to identify the sources of Earth’s volatiles.

The researchers, from the University of Cambridge and Imperial College London, have previously found that Earth’s zinc came from different parts of our solar system: about half came from beyond Jupiter and half originated closer to Earth.

“One of the most fundamental questions on the origin of life is where the materials we need for life to evolve came from,” said Dr. Rayssa Martins from Cambridge’s Department of Earth Sciences. “If we can understand how these materials came to be on Earth, it might give us clues to how life originated here, and how it might emerge elsewhere.”

Planetesimals are the main building blocks of rocky planets, such as Earth. These small bodies are formed through a process called accretion, where particles around a young star start to stick together, and form progressively larger bodies.

 Scientific Inquiry: How Did The Building Blocks Of Life Arrive On Earth?

An iron meteorite from the core of a melted planetesimal (left) and a chondrite meteorite, derived from a ‘primitive’, unmelted planetesimal (right). Credit: Sedgwick Museum of Earth Sciences, University of Cambridge.

Not all planetesimals are equal. The earliest ones in the solar system melted and lost volatiles due to high radioactivity. Some formed later, when radioactivity was lower, helping them retain more volatiles.

In a study, researchers looked at the different forms of zinc that arrived on Earth from these planetesimals, and measured the zinc from a large sample of meteorites originating from different planetesimals and used this data to model how Earth got its zinc, by tracing the entire period of the Earth’s accretion, which took tens of millions of years.

Their results show that while these ‘melted’ planetesimals contributed about 70% of Earth’s overall mass, they only provided around 10% of its zinc.

According to the model, the rest of Earth’s zinc came from materials that didn’t melt and lose their volatile elements. The findings suggest that unmelted, or ‘primitive’ materials were an essential source of volatiles for Earth.

“We know that the distance between a planet and its star is a determining a factor in establishing the necessary conditions for that planet to sustain liquid water on its surface,” said Martins, the study’s lead author. “But our results show that there’s no guarantee that planets incorporate the right materials to have enough water and other volatiles in the first place – regardless of their physical state.”

The ability to trace elements through millions or even billions of years of evolution could be a vital tool in the search for life elsewhere, such as on Mars, or on planets outside our solar system.

“Similar conditions and processes are also likely in other young planetary systems,” said Martins. “The roles these different materials play in supplying volatiles is something we should keep in mind when looking for habitable planets elsewhere.”

Source

Paper

Rayssa Martins et al, Primitive asteroids as a major source of terrestrial volatiles, Science Advances (2024). DOI: 10.1126/sciadv.ado4121www.science.org/doi/10.1126/sciadv.ado4121

Written by Eddie Gonzales  Jr. – MessageToEagle.com Staff Writer