Eddie Gonzales Jr. – MessageToEagle.com – A long-held belief in forensics saying that fingerprints from different fingers of the same person are unique. Columbia engineers have built a new AI system, and it shows that they are similar, but we’ve been comparing fingerprints the wrong way.
From “Law and Order” to “CSI,” not to mention real life, investigators have used fingerprints as the gold standard for linking criminals to a crime. But if a perpetrator leaves prints from different fingers in two different crime scenes, these scenes are very difficult to link, and the trace can go cold.
It’s a well-accepted fact in the forensics community that fingerprints of different fingers of the same person–”intra-person fingerprints”–are unique, and therefore unmatchable.
Research led by Columbia Engineering undergraduate
A team led by Columbia Engineering undergraduate senior Gabe Guo challenged this widely held presumption. Guo, who had no prior knowledge of forensics, found a public U.S. government database of some 60,000 fingerprints and fed them in pairs into an artificial intelligence-based system known as a deep contrastive network. Sometimes the pairs belonged to the same person (but different fingers), and sometimes they belonged to different people.
AI has potential to greatly improve forensic accuracy
Study findings challenge–and surprise–forensics community
Once the team verified their results, they quickly sent the findings to a well-established forensics journal, only to receive a rejection a few months later. The anonymous expert reviewer and editor concluded that “It is well known that every fingerprint is unique,” and therefore it would not be possible to detect similarities even if the fingerprints came from the same person.
Unveiled: a new kind of forensic marker to precisely capture fingerprints
One of the sticking points was the following question: What alternative information was the AI actually using that has evaded decades of forensic analysis? After careful visualizations of the AI system’s decision process, the team concluded that the AI was using a new kind of forensic marker.
“The AI was not using ‘minutiae,’ which are the branchings and endpoints in fingerprint ridges – the patterns used in traditional fingerprint comparison,” Guo, who began the study as a first-year student at Columbia Engineering in 2021, said in a press release.
“Instead, it was using something else, related to the angles and curvatures of the swirls and loops in the center of the fingerprint.”
Columbia Engineering senior Aniv Ray and PhD student Judah Goldfeder, who helped analyze the data, noted that their results are just the beginning. “Just imagine how well this will perform once it’s trained on millions, instead of thousands of fingerprints,” said Ray.
A need for broader datasets
The team is aware of potential biases in the data. The authors present evidence that indicates that the AI performs similarly across genders and races, where samples were available. However, they note, more careful validation needs to be done using datasets with broader coverage if this technique is to be used in practice.
Transformative potential of AI in a well-established field
Written by Eddie Gonzales Jr. – MessageToEagle.com Staff Writer