Site icon MessageToEagle.com

360-Million-Year-Old Cosmic Collision Revisited In New Images From ESO’s Very Large Telescope

The surroundings of the interacting galaxy NGC 5291 (annotated). Credits: ESO

The surroundings of the interacting galaxy NGC 5291 (annotated). Credits: ESO

MessageToEagle.com – Over 360 million years ago, NGC 5291 – an elliptical galaxy located nearly 200 million light-years away in the constellation of Centaurus (The Centaur) –  was involved in a dramatic and violent collision with another galaxy travelling at immense speeds.

The cosmic crash ejected huge streams of gas into nearby space, which later coalesced into a ring formation around NGC 5291, the hazy, golden oval dominating the centre of this image.

The spectacular aftermath of a 360 million year old cosmic collision is revealed in great detail in this image from ESO’s Very Large Telescope at the Paranal Observatory. Among the debris surrounding the elliptical galaxy NGC 5291 at the centre is a rare and mysterious young dwarf galaxy known as NGC 5291N. Credit: ESO

Now, the spectacular aftermath of this very old cosmic collision is revealed in great detail in new images from ESO’s Very Large Telescope at the Paranal Observatory.

Over time, material in this ring gathered and collapsed into dozens of star-forming regions and several dwarf galaxies, revealed as pale blue and white regions scattered around NGC 5291 in this new image from the FORS instrument, mounted on the VLT.

The most massive and luminous clump of material, to the right of NGC 5291, is one of these dwarf galaxies and is known as NGC 5291N.

The Milky Way, like all large galaxies, is believed to have formed through the build-up of smaller dwarf galaxies in the early years of the Universe. These small galaxies, if they have survived on their own up to the present day, now normally contain many extremely old stars.

The spectacular aftermath of a 360 million year old cosmic collision is revealed in great detail in this image from ESO’s Very Large Telescope at the Paranal Observatory. Among the debris surrounding the elliptical galaxy NGC 5291 at the centre is a rare and mysterious young dwarf galaxy, which appears as a bright clump towards the right of the image. 
Credit: ESO

Yet NGC 5291N appears to contain no old stars and it doesn’t look like a typical dwarf galaxy, but instead it shares a striking number of similarities with the clumpy structures present within many of the star-forming galaxies in the distant Universe.

This makes it a unique system in our local Universe and an important laboratory for the study of early gas-rich galaxies, which are normally much too distant to be observed in detail by current telescopes.

This unusual system has previously been observed by a wide range of ground-based facilities, including ESO’s 3.6-metre telescope at the La Silla Observatory. However, the capabilities of MUSE, FORS and the Very Large Telescope have only now allowed some of the history and properties of NGC 5291N to be determined.

Future observations, including those by ESO’s European Extremely Large Telescope (E-ELT), may allow astronomers to further unravel this dwarf galaxy’s remaining mysteries.

MessageToEagle.com

source: ESO

Exit mobile version