MessageToEagle.com

Key Property in Andromeda's Satellites - Predicted

15 February, 2013

Share this story:
Follow us:

MessageToEagle.com - Using modified laws of gravity, researchers from Case Western Reserve University and Weizmann Institute of Science closely predicted a key property measured in faint dwarf galaxies that are satellites of the nearby giant spiral galaxy Andromeda.

The predicted property in this study is the velocity dispersion, which is the average velocity of objects within a galaxy relative to each other. Astronomers can use velocity dispersion to determine the accelerations of objects within the galaxy and, roughly, the mass of a galaxy, and vice-versa.

To calculate the velocity dispersion for each dwarf galaxy, the researchers utilized Modified Newtonian Dynamics, MOND for short, which is a hypothesis that attempts to resolve what appears to be an insufficient amount of mass in galaxies needed to support their orbital speeds.



Click on image to enlarge

M31: The Andromeda Galaxy

Andromeda is the nearest major galaxy to our own Milky Way Galaxy. Our Galaxy is thought to look much like Andromeda. Together these two galaxies dominate the Local Group of galaxies. The diffuse light from Andromeda is caused by the hundreds of billions of stars that compose it. The several distinct stars that surround Andromeda's image are actually stars in our Galaxy that are well in front of the background object. Andromeda is frequently referred to as M31 since it is the 31st object on Messier's list of diffuse sky objects. M31 is so distant it takes about two million years for light to reach us from there. Although visible without aid, the above image of M31 is a digital mosaic of 20 frames taken with a small telescope. Much about M31 remains unknown, including how the center acquired two nuclei. Credits: Robert Gendler


MOND suggests that, under a certain condition, Newton's law of gravity must be altered. That hypothesis is less widely accepted than the hypothesis that all galaxies contain unseen dark matter that provides needed mass.

"MOND comes out surprisingly well in this new test," said Stacy McGaugh, astronomy professor at Case Western Reserve. "If we're right about dark matter, this shouldn't happen."

McGaugh teamed with Mordehai Milgrom, the father of MOND and professor of physics and astrophysics at Weizmann Institute in Israel.

Their study, "Andromeda Dwarfs in the Light of MOND" will be published in the Astrophysical Journal.

Astronomers and physicists need some way to explain why galaxies rotate faster than predicted by the law of gravity without flying apart. That spurred researchers to theorize that dark matter, first assumed by Dutch astronomer Jan Oort in 1932, is gathered in and around galaxies, adding the mass needed to hold galaxies together.

Dissatisfied with that hypothesis, Milgrom offered MOND, which says that Newton's force law must be tweaked at low acceleration, eleven orders of magnitude lower than what we feel on the surface of Earth.

Acceleration above that threshold is linearly proportional to the force of gravity -- as Newton's law states -- but below the threshold, is not, he posits. When the force law is tweaked under that limitation, the modification can resolve the mass discrepancy.

Early in his career, McGaugh believed in dark matter. But, over time, he's found the hypothesis comes up short in a number of aspects while he's found increasing evidence that supports MOND.

In this paper, researchers tested MOND with dwarf spheroidal galaxies. These very low-surface brightness galaxies are satellites of larger galaxies. By the standards of galaxies they are tiny, containing only a few hundred thousand stars.

"These dwarfs are spread exceedingly thin. Their light is spread over hundreds to thousands of light-years. These systems pose a strong test of MOND because their low stellar density predicts low accelerations," McGaugh said.

McGaugh and Milgrom used the luminosity of the galaxies, an indicator of stellar mass, and MOND to make their calculations and predict the velocity dispersions of 17 faint galaxies. In 16 cases, the predictions closely matched the velocity dispersions measured by others. In the last case, the data from independent observers differed from one another.

"Many predictions were bang on," McGaugh said. "Typically, the better the data, the better the agreement."

The scientists also used MOND to predict velocity dispersions for 10 more faint dwarf galaxies in Andromeda. They are awaiting measurements to refute or verify this prediction.

MessageToEagle.com

See also:
Researchers Have Identified The First "Bone" Of The Milky Way

Follow MessageToEagle.com for the latest news on Facebook and Twitter !

Don't Miss Our Stories! Get Our Daily Email Newsletter

Enter your email address:


Once you have confirmed your email address, you will be subscribed to the newsletter.

Recommend this article:

Teleportation Experiments Continue - Record-Breaking Distance of 143 Kilometers Achieved!

Violent Behavior Of Our Sun - Massive 500,000 Mile Long Filament Observed

First Massive Galaxies Lit Up The Early Universe

Intense Blue Lightning On Saturn Visible From Space In Broad Daylight!

Subscribe To Our Space, Astronomy, Astrophysics, Earth and Xenology News!

Grab the latest RSS feeds right to your reader, desktop or mobile phone.

Subscribe to RSS headline updates from:
Powered by FeedBurner

Go to - MAIN PAGE

Copyright © MessageToEagle.com All rights reserved.
Go to - MAIN PAGE


Get our top stories
Follow MessageToEagle.com

 Subscribe in a reader

Join Us On Facebook!

Other Popular Articles

Universe:


Juno Spacecraft's Critical Mission - To Uncover The Secrets Hidden Beneath Jupiter's Mysterious Clouds

What’s Going On Out There? - NASA's RBSP Spacecraft Will Meet ‘Killer Electrons’ And Other Dangerous Phenomena

New Photos Of Saturn And Its Moon Titan - See A Striking Change Of Colors!

Beautiful and Mysterious Superbubble In The Large Magellanic Cloud Observed By Chandra

WISE Discovers Millions Of Black Holes And 1,000 Extreme Galaxies Called Hot DOGS

Dawn Spacecraft Is Heading Towards Dwarf Planet Ceres To Investigate The Formation Of Our Solar System

Lunar Paradox Problem: Moon Origin In Focus Again!

There Is Sugar In That Star! Life Building Blocks Discovered Around A Sun-Like Star

First Planetary System Orbiting Two Suns Found By Kepler

Astronomers Test Einstein In A New Regime Using Pair of Burnt-Out Stars

The Universe Will Vanish In 100 Billion Years - Says Nobel Prize Winner Brian P. Schmidt

Our Creator Is A Cosmic Computer Programmer - Says JPL Scientist

Mysterious, Huge 'Pigtail' Molecular Cloud Discovered In The Galactic Center

Astronomers See The Infant Universe's Oldest Galaxies Yet!

Star With The Secret Of Eternal Youth

Physicists Challenge Validity Of Big Bang Theory

Space-Time Crystal Computer That Can Outlive Even The Universe Itself!

Dawn Spacecraft Is Heading Towards Dwarf Planet Ceres To Investigate The Formation Of Our Solar System

New Photos Of Saturn And Its Moon Titan - See A Striking Change Of Colors!

What’s Going On Out There? - NASA's RBSP Spacecraft Will Meet ‘Killer Electrons’ And Other Dangerous Phenomena

Mysterious X-Rays From Jupiter Near The Poles

W3Counter