MessageToEagle.com

The 'Habitable Edge' of Exomoons

6 March, 2013

Share this story:

Follow us:

MessageToEagle.com - Exomoons, moons of alien planets have many hurdles to habitability, such as eclipses and tidal heating, that are different from the planets they orbit.

Astronomers have their fingers crossed that within the haul of data collected by NASA's Kepler mission, which has already detected nearly three thousand possible exoplanets, hide the signatures of the very first exomoons.

The discovery of alien moons will open up an exciting new frontier in the continuing hunt for habitable worlds outside the Solar System.

With the confirmation of exomoons likely right around the corner, researchers have begun addressing the unique and un-Earthly factors that might affect their habitability.

Because exomoons orbit a larger planetary body, they have an additional set of constraints on their potential livability than planets themselves. Examples include eclipses by their host planet, as well as reflected sunlight and heat emissions. Most of all, gravitationally-induced tidal heating by a host planet can dramatically impact a moon's climate and geology.

In essence, compared to planets, exomoons have additional sources of energy that can alter their "energy budgets," which, if too high, can turn a temperate, potential paradise into a scorched wasteland.


Artist's concept of a pair of exomoons orbiting a gas giant. Credit: R. Heller, AIP

"What discriminates the habitability of a satellite from the habitability of a planet in general is that it has different contributions to its energy budget," said René Heller, a postdoctoral research associate at the Leibniz Institute for Astrophysics in Potsdam, Germany.

The "habitable edge"

In a series of recent papers, Heller and his colleague Rory Barnes from the University of Washington and the NASA Astrobiology Institute tackled some of the big-picture problems to habitability posed by the relationship between exomoons and their host planets.

Heller and Barnes have proposed a circumplanetary "habitable edge," similar to the well-established circumstellar "habitable zone." This zone is the temperature band around a star within which water neither boils off or freezes away on a planet's surface – not too hot, not too cold, thus earning it the nickname "the Goldilocks zone."

The habitable edge is rather different. It is defined as the innermost circumplanetary orbit in which an exomoon will not undergo what is known as a runaway greenhouse effect.

"To be habitable, moons must orbit their planets outside of the habitable edge," said Heller.

A runaway greenhouse effect occurs when a planet’s or moon's climate warms inexorably due to positive feedback loops.

An example is thought to have taken place right next door, so to speak, to the other planet most like Earth that we know of: Venus.

There, the heat from a young, brightening Sun could have increasingly evaporated a primordial ocean. This evaporative process put ever more heat-trapping water vapor in the atmosphere, which led to more evaporation, and so on, eventually drying the planet out as the water was broken apart into hydrogen and oxygen by the Sun's ultraviolet radiation. The atmospheric hydrogen on Venus escaped into space, and without hydrogen, no more water could form.

Moons situated in fairly distant orbits from their planets should be safely beyond the habitable edge wherein this desiccation takes place.

"Typically, and especially in the solar system, stellar illumination is by far the greatest source of energy on a moon," said Heller.


An example of a circumstellar irradiation habitable zone, the orbital band around a star where water can exist in liquid form on a planet or exomoon's surface. Credit: NASA/JPL-Caltech

"In wide planetary orbits, moons will be fed almost entirely by stellar input. But if a satellite orbits its host planet very closely, then the planet's stellar reflection, its own thermal emission, eclipses and tidal heating in the moon can become substantial."

The cumulative effects of the non-tidal heating effects are small, but could be the difference between an exomoon being inside or outside the habitable edge.

Basking in the glow

Here on Earth, we get a little extra energy from the Moon in the form of moonlight, which is reflected light from the Sun.

Moons, though, get bathed in a lot more sunlight from their planetary neighbors; Earth shines almost 50 times as brightly in the lunar sky as the Moon does in our night sky. In addition to reflected sunlight, planets also emit absorbed sunlight as thermal radiation onto their exomoons.

This "planetshine" can add a not-insubstantial amount of energy to an exomoon's overall intake. Imagine a gas giant planet orbiting a Sun-like star at about the same distance that Earth orbits our Sun. For a moon with a relatively close orbit around this planet, like Io’s orbit around Jupiter, Heller calculates that the moon could absorb an additional seven or so watts per square meter of power. (Earth absorbs about 240 watts per square meter from the Sun).

Periodic plunges into darkness

Eclipses can potentially offset some of the extra energy input from planetshine. For eclipses, Heller calculated that lost stellar illumination for an exomoon in a close orbit (similar to the closest found in our solar system) is up to 6.4 percent.


A figure showing the different kinds of illumination that an exomoon can receive from both its star and its host planet during four phases of an orbital period. Note that the image is not to scale and that penumbras – partial shadows – are ignored for conceptual ease. Credit: Heller and Barnes


Interestingly, because most moons including ours are tidally locked to their planet – that is, one side of the moon constantly faces the planet – eclipses, as well as planetshine, would only darken and lighten one hemisphere. This phenomenon could modify the climate, as well as the behavior of life forms, in ways not seen on Earth.

"Asymmetric illumination on the moon could induce wind and temperature patterns, both in terms of geography and in time, which are unknown from planetary climates," Heller noted. "Life on a moon with regular, frequent eclipses would surely have to adapt their sleep-wake and hunt-hide rhythms as well, but only those creatures on the planet-facing hemisphere."

Roll tides

Although the eclipse-related loss of several percentage points of illumination is not a huge loss of energy, a moon-planet duo might need to be closer to its star to compensate for this deficit if the moon were still to be considered habitable from a Goldilocks zone perspective.

However, this situation introduces another hurdle to habitability: The closer a planet is to its star, the stronger the star's gravitational pull is on the planet's moons. This extra pull can tug moons into non-circular, or eccentric orbits about their planets.

Eccentric orbits, in turn, result in varying amounts of gravitational stress exerted on the moon as it orbits.


A ringed gas giant planet and its moon bathed in the crimson rays of a red dwarf star. Credit: NASA/ESA/G.Bacon (STScI)


These “tidal forces,” as they are called, cause heating due to friction. The ocean tides we experience on Earth occur partly as a result of the Moon's gravity tugging more on the water and land nearest it, which distorts Earth's shape. The effect goes both ways, of course, but not equally, with planets inducing significantly greater tidal heating within their much smaller moons.

If an exomoon's orbit takes it too close to its planet, tidal heating could push the energy budget too high, culminating in a runaway greenhouse effect. At the extremes, the tidal heating could unleash massive volcanic activity, leaving the satellite covered in magma and distinctly inhospitable, like the "pizza moon" Io.

On the other hand, it should be noted, tidal heating might be a savior for life. Tidal heating could help sustain a subsurface ocean, like the one suspected to exist within Saturn's moon Europa, alternatively making an otherwise unwelcoming exomoon outside the traditional habitable zone potentially livable.

Small stars, dead moons

Another factor comes into play as eclipses rob a bit of energy from an exomoon and require the moon-planet pair to be closer to their star. To remain gravitationally bound to a planet and not be ripped away by the star's gravity, a moon must fall within a so-called “Hill radius” – the planet's sphere of gravitational dominance. This radius shrinks with greater proximity to the host star. The closer the planet and moon are to their star, the less space is available outside the habitable edge.

For planets and attendant moons around dim, cool, low-mass stars called red dwarfs, this dynamic becomes important. The habitable zone around red dwarf stars is very tight; for a star with a quarter of the Sun's mass, for instance, the Goldilocks zone is thought to be around just 13 percent the Sun-Earth distance – in other words, a third of Mercury's orbital distance from the Sun.

In a red dwarf solar system, not only must a moon then be closer to its habitable zone planet, but given the planet's necessary proximity to its star, the moon's orbit will tend to be eccentric. These qualities increase the chances that the moon will fall within the habitable edge.

Heller calculated that for many red dwarf stars, the odds of them hosting habitable moons is accordingly slim.

"There is a critical stellar mass limit below which no habitable moon can exist," Heller said. "Around low-mass stars with masses of about twenty percent the mass of the Sun, a moon must be so close to its habitable zone planet to remain gravitationally bound that it is subject to intense tidal heating and cannot under any circumstances be habitable."

A little here, a little there

Many factors beyond habitable edge considerations, of course, ultimately determine an exomoon's habitability. To be considered broadly habitable by creatures other than, say, subsurface bacteria, an exomoon must meet some of the same basic criteria as a habitable, Earth-like exoplanet: It must have liquid surface water, a long-lived substantial atmosphere, and a magnetic field to protect it from solar radiation (and, in the case of exomoons around gas giants like Jupiter, from the charged particles created in the giant exoplanet's magnetosphere).


Click on image to enlarge

Selected moons of the solar system. Far bigger moons should be possible orbiting around exoplanets. Credit: NASA

To possess these qualities, which scientists say grow likelier with increasing mass, a habitable exomoon will likely be quite large compared to those in the solar system – more on the order of the size of Earth itself. The biggest moon in our Solar System, Jupiter's Ganymede, is just 2.5 percent of Earth's mass. But previous studies have suggested that monstrous moons by the solar system's standards are indeed possible.

The Kepler mission is expected to be able to detect exomoons down to about 20 percent of the mass of the Earth. The data, which consists of measuring the extremely small dips in the amount of starlight as their planets (or moons) block it from our point of view – should reveal a moon’s mass and orbital parameters as well.

Armed with this information – and now with habitable edge considerations – astronomers can thus hope to make some ballpark speculations on any soon-to-be-discovered exomoon’s propensity to support living beings.

Heller hopes that there will be a list of candidate exomoons ready for observing by next-generation instruments, such as the James Webb Space Telescope and thirty meter-class ground telescopes. These observatories, coming online in the next decade, could be able to characterize exomoon atmospheres and offer tantalizing evidence of life.

"The first exomoons that we find will be large – maybe Mars- or even Earth-sized – and therefore intrinsically more likely to be habitable than small moons," Heller said. "With Kepler finding many more giant planets than terrestrial planets in stellar habitable zones, it's really important that we try to figure out what conditions might be like on the moons of these giants to gauge if they can host extraterrestrial life."

MessageToEagle.com via Astrobio.net

See also: Extraterrestrial Radio Hotline - Why Are Aliens Not Communicating With Us?

China And Commission 51 Focus On Search For Extraterrestrial Life

Mysterious Signal Originating From Jupiter Discovered - Changes In Its Intensity Observed

Follow MessageToEagle.com for the latest news on Facebook and Twitter !

Don't Miss Our Stories! Get Our Daily Email Newsletter

Enter your email address:


Once you have confirmed your email address, you will be subscribed to the newsletter.

Recommend this article:

Extraterrestrial Watchers And Dangerous Interstellar Signals
Space is vast. They could be are out there, scanning the skies and listening. Do we want them to hear us? Several years ago, we picked up a mysterious signal from outer space that has never been explained...

Find Dyson Spheres And Powerful Alien Worlds - Let's Make Science Fiction A Reality!

Subscribe To Our Space, Astronomy, Astrophysics, Earth and Xenology News!

Grab the latest RSS feeds right to your reader, desktop or mobile phone.

Subscribe to RSS headline updates from:
Powered by FeedBurner

Go to - MAIN PAGE

Copyright © MessageToEagle.com All rights reserved.
Go to - MAIN PAGE


Advertise With Us!

Submissions

Get our top stories
Follow MessageToEagle.com

 Subscribe in a reader

Join Us On Facebook!

Other Popular Articles

Plasma Aliens Could Live Inside "Black Clouds" In The Universe
Extraterrestrial life can be stranger than we even dare to imagine. On Earth life is organic. It is composed of organic molecules, which are simply the compounds of carbon, excluding carbonates and carbon dioxide. However...

Matrix Dilemma - Do Humans Live In The Ultimate Computer Game Of The Superior Ones?
There's a distinct possibility that the universe, our life, and everything around us are part of a vast, living and 3D holographic simulation conducted by "someone" invisible and superior to everything known in the universe! Is it the ultimate computer game of the superior ones?

Advanced Extraterrestrial Civilizations - Their Technology And Capabilities
"Any sufficiently advanced technology is indistinguishable from magic, "Arthur C. Clarke once wrote a long time ago. In this Xenology article we take a look at who could be out there and what kind of advanced technology they could posses. "Soon, humanity may face an existential shock as the current list of a dozen Jupiter-sized extra-solar planets swells to hundreds of earth-sized planets, almost identical twins of our celestial homeland.

Unusual Organisms Living On Pandora - A Fictional Alien World That Could Be Real
What kind of unusual organisms could exists on a world like Pandora? What could we expect to find there? As we are about to find out the line between science fiction and science fact is thin indeed. Pandora is the idyllic blue world featured in the movie Avatar. Its location is a real place, Alpha Centauri, the nearest star to our Sun and the most likely destination for our first journey beyond the solar system.

Xenology: Scientific study of extraterrestrials



Invisible Aliens: Extraterrestrial Life May Be Beyond Human Understanding

World's Largest Telescope SKA Can Detect Extraterrestrial Life By 2024

Are Extraterrestrials Sending Us Signals By Manipulating Starlight? Alien Messages Could Be Found In The Stars - Astrophysicist Says

Invisible Aliens: Extraterrestrial Life May Be Beyond Human Understanding

Extraterrestrial Civilizations Can Use Chlorofluorocarbons To Terraform Alien Worlds

Plasma Aliens Could Live Inside "Black Clouds" In The Universe

Xenoarchaeology: ET Artifacts In Our Solar System Could Exist And Observe Us

Not All Asteroid Belts Are Suitable For Alien Life - Ours Is Definitely Unique!

ET Machines, Cyborgs Or Humans - Who Can Explore Space Best?

ET Life In Focus:
New Powerful Telescopes Will Search For Alien Intelligence

Extraterrestrials Can Resemble Humans: We Can Share Similar DNA

Deception In The Universe - Meteors Can Fool Us To Think Alien Worlds Are Inhabited With Life

ET Life In Focus:
New Powerful Telescopes Will Search For Alien Intelligence

UK Has Extraterrestrial War Technology And Is Prepared To Use It If Attacked By Aliens: Says Former Government Advisor Nick Pope

Extraterrestrials Can Resemble Humans: We Can Share Similar DNA

Deception In The Universe - Meteors Can Fool Us To Think Alien Worlds Are Inhabited With Life

Can Alien Bodies And DNA Provide Insights Into Evolution On Other Worlds?

What If Curiosity Suddenly Encounters A Martian?

Edinburgh University Offers Free Online Courses On Searching For Alien Life!

Aliens Will Look Like Huge Jelly-Fish Floating In The Air: Scientist Says

Have Super Aliens Already Left Our Visible Universe? A Closer Look At The Transcension Hypothesis

Aliens Living On Desert Worlds

Alien Life Inside A Postbiological Universe Where Time Has No Meaning

Super Aliens May Already Live Inside Supermassive Black Holes

Alien Life In The Multiverse - Are We Living In A "Rare Universe"?

Our Creator Is A Cosmic Computer Programmer - Says JPL Scientist
Are we just a computer simulation? Who or what is the creator? More and more scientists are now seriously considering the possibility that we might live in a matrix, and they say that evidence could be all around us...

Cosmic Secrets Of Cthulhu Revealed By Scientists

Do Aliens Use Intelligent Supercomputers And Quantum Communication Networks To Manage Their Societies?

Time Travel: A Journey To The Fourth Dimension And The Incredible Science Of Dr. Who

Alien Species Living In The Inner Milky Way Could Be In Danger

When Will Humans Join The Galactic Club?

Black Plants Could Exist On Alien Worlds With Two Suns

Alien Message Can Be Hidden In Your DNA Do We All Carry A Cosmic Greeting Card?
While SETI is busy searching for signals from alien civilizations, there are scientists who think we can find proof of advanced extraterrestrial life much closer to home - namely in our DNA! Instead of leaving artefacts for humans to find once they are sufficiently evolved, an advanced extraterrestrial civilizations might instead incorporate information into the human genome, allowing it to be copied and maintained over immense periods of time.

W3Counter