MessageToEagle.com

Unseen Planets May Be Lurking Near The Young Star J 1604

8 February, 2013

Share this story:
Follow us:

MessageToEagle.com - Using the Subaru Telescope, an international team of astronomers led by Satoshi Mayama (The Graduate University for Advanced Studies, Japan) and Ruobing Dong (Princeton University, U.S.A.) captured the first vivid infrared image of a curved arm of dust extending over a hole on a disk around a young star--2MASS J16042165-2130284 (J 1604).

This feature indicates the probable existence of unseen planets within the hole.

Research over the past two decades has confirmed that new stars are often surrounded by disks of dense gas and dust ("protoplanetary disks") from which planets form. A central star enters an active phase of planet building when it is a few million years old. During this period, newborn planets may deplete some of the gas and dust in the disk, producing a hole within it, although the outer ring remains.


Subaru Telescope's near-infrared (1.6 ?m) image of the protoplanetary disk around the young star J 1604. A black circular mask covers the bright, saturated light from the central star. The gauges for distance are in astronomical units and arc seconds. (Abbreviated as AU, an astronomical unit is the distance between the Sun and Earth. Abbreviated as arcsec, an arc second is 1/3600 of a degree.) Prominent features include the hole (white dotted line) in the disk; the arm extending over the hole (on the right); and the asymmetric dip (on the left). Click here for the image without labels. Credit: The Graduate University for Advanced Studies and the National Astronomical Observatory of Japan


However, the debatable origins of the hole require direct observation to confirm this process. Direct imaging of the structures that indicate planet building inside of the hole have rarely occurred—until now.

The current team's research, a part of the Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS) Project is filling in the observational gaps in this relatively unexplored area.

The team used the high-resolution infrared camera HiCIAO (High Contrast Instrument for the Subaru Next Generation Adaptive Optics) mounted on the 8.2-m Subaru Telescope in April 2012 to observe the young star J 1604, which has a mass similar to the Sun's; it is located in the Upper Scorpius star-forming region at a distance of 470 light years and is estimated to be 3.7 million years (Myr) old.

The researchers captured a very high-resolution (0.07 arc seconds) near-infrared image of its protoplanetary disk, which shows dust particles that scatter the light from the central star.

The disk has some interesting features: a large hole with an asymmetric dip in the disk and a curved arm extending over the hole.

This is the first vivid infrared image of such an arm in observations of the disks around young stars, and it also marks the first detection of an arm of dust that could lead to the formation of Earth-like rocky planets.

The arm emerges from the inner edge of the western side of the disk, begins to extend inward, and then curves to the northeast. Based on their detailed modeling, the team estimates that the radius of the disk's inner edge is 63 AU; its inclination is 10 degrees; and the length of the arm is 50 AU.



Click on image to enlarge

Artist's rendition of the protoplanetary disk around J 1604. Credit: The Graduate University for Advanced Studies and the National Astronomical Observatory of Japan


Their measurements of the surface brightness of the gap show that it drops by a factor of five when compared with the rest of the disk.

Characteristics of the hole in the disk and the arm over it indicate the possible presence of unseen planets within the hole. The width and depth of the observed hole conform to the size of a hole that planets would create according to current theories of planet formation.

The researchers' calculations suggest that the hole in this disk might mark the presence of at least one planet at 40 – 50 AU from the central star. Current theories also predict that the gravity of a planet could produce a curved arm in a disk. Because the shape of the arm in the Subaru Telescope image shared features in line theoretical predictions, the team concluded that unseen planets could explain its structure.

The high-resolution image from these scientists' research at Subaru Telescope clearly illustrates the dynamic context in which planets are born. Providing these kinds of detailed images of a face-on disk object becomes a perfect laboratory for astronomers to test and refine their theoretical models of planet formation.

MessageToEagle.com

See also:
Researchers Have Identified The First "Bone" Of The Milky Way

Follow MessageToEagle.com for the latest news on Facebook and Twitter !

Don't Miss Our Stories! Get Our Daily Email Newsletter

Enter your email address:


Once you have confirmed your email address, you will be subscribed to the newsletter.

Recommend this article:

Teleportation Experiments Continue - Record-Breaking Distance of 143 Kilometers Achieved!

Violent Behavior Of Our Sun - Massive 500,000 Mile Long Filament Observed

First Massive Galaxies Lit Up The Early Universe

Intense Blue Lightning On Saturn Visible From Space In Broad Daylight!

Subscribe To Our Space, Astronomy, Astrophysics, Earth and Xenology News!

Grab the latest RSS feeds right to your reader, desktop or mobile phone.

Subscribe to RSS headline updates from:
Powered by FeedBurner

Go to - MAIN PAGE

Copyright © MessageToEagle.com All rights reserved.
Go to - MAIN PAGE


Get our top stories
Follow MessageToEagle.com

 Subscribe in a reader

Join Us On Facebook!

Other Popular Articles

Universe:


Juno Spacecraft's Critical Mission - To Uncover The Secrets Hidden Beneath Jupiter's Mysterious Clouds

What’s Going On Out There? - NASA's RBSP Spacecraft Will Meet ‘Killer Electrons’ And Other Dangerous Phenomena

New Photos Of Saturn And Its Moon Titan - See A Striking Change Of Colors!

Beautiful and Mysterious Superbubble In The Large Magellanic Cloud Observed By Chandra

WISE Discovers Millions Of Black Holes And 1,000 Extreme Galaxies Called Hot DOGS

Dawn Spacecraft Is Heading Towards Dwarf Planet Ceres To Investigate The Formation Of Our Solar System

Lunar Paradox Problem: Moon Origin In Focus Again!

There Is Sugar In That Star! Life Building Blocks Discovered Around A Sun-Like Star

First Planetary System Orbiting Two Suns Found By Kepler

Astronomers Test Einstein In A New Regime Using Pair of Burnt-Out Stars

The Universe Will Vanish In 100 Billion Years - Says Nobel Prize Winner Brian P. Schmidt

Our Creator Is A Cosmic Computer Programmer - Says JPL Scientist

Mysterious, Huge 'Pigtail' Molecular Cloud Discovered In The Galactic Center

Astronomers See The Infant Universe's Oldest Galaxies Yet!

Star With The Secret Of Eternal Youth

Physicists Challenge Validity Of Big Bang Theory

Space-Time Crystal Computer That Can Outlive Even The Universe Itself!

Dawn Spacecraft Is Heading Towards Dwarf Planet Ceres To Investigate The Formation Of Our Solar System

New Photos Of Saturn And Its Moon Titan - See A Striking Change Of Colors!

What’s Going On Out There? - NASA's RBSP Spacecraft Will Meet ‘Killer Electrons’ And Other Dangerous Phenomena

Mysterious X-Rays From Jupiter Near The Poles

W3Counter